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ABSTRACT

The accelerated advancements in remote sensing technologies and the deployment of satellites offering freely
accessible multispectral satellite imagery have facilitated the application of machine learning, particularly deep
learning techniques, to tasks such as crop classification, yield estimation, and bloom detection. Additionally,
several countries in the European Union have adopted the Land Parcel Identification System (LPIS), that obliges
farmers to declare the exact area and crop type of their parcels each year while also making the LPIS data freely
accessible to the public. For the purpose of the SmartBeeKeep research project, co-funded by EU and Greek
funds, in this work we utilize the above with the objective to combine multispectral and multitemporal satellite
data obtained from the Sentinel 2 satellite with the LPIS parcel maps in order to detect and classify the blooming
period of the beekeeping plant lavender, with the use of automated deep machine learning methods. The specific
plant type was selected as it is exhibits particular interest to the beekeeping community, which is the main
focus group of the SmartbeeKeep project. For this task, a dataset was amassed and thoroughly sorted out, that
comprises of approximately 15k individual parcels from the area of Southern France between January 2020 to
December 2021. For each parcel, a study of its harmonized EVI index was carried out in order to roughly identify
its blooming period temporal boundaries and with the help of experts, characteristic parcels for sub-regions of
Marseille were selected to create more accurate temporal annotations. Additionally, freely available data from
the EU Copernicus DIAS reference service WEkEO were utilized as an initial temporal estimation for the Start-
of-Season (SOS) and End-of-Season (EOS) period. Two temporal deep learning methods were evaluated, namely
a convolutional and a recurrent and model, so as to establish benchmark results on the created dataset. The
dataset will be released upon publication.
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1. INTRODUCTION

Maintaining robust bee populations is vital for the global environment and economy. Bees are responsible for
pollinating one-third of plant-based foods consumed by humans and contribute an estimated €265 billion1 each
year to the economy through their pollination services. Despite their environmental and economical importance,
the ever changing climate conditions and the use of pesticides has resulted in a decline in bee population.2 As
such, systematic efforts are necessary to maintain a healthy bee population and aid the beekeeping community
in such task.

One of the challenges that beekeepers face is the need of constant relocation of the beehives, since bees
have a fly limit of 10 km radius from their beehive and that limits pollen gathering. Therefore, in order to
increase production, beekeepers are in need of accurate information regarding blooming periods and locations
of beekeeping plants in the general area that they operate. Recently, remote sensing tools have gained traction,
providing non-intrusive ways for crop and phenology monitoring,3 examinations of ecological changes over time,4

soil degradation estimation5 or yield production estimation.6 Moreover, Satellite missions such as SENTINEL-1,
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SENTINEL2-A/B and LANDSAT-7/8, with their high spectral and temporal resolution (13 spectral bands with
a revisit rate of five days for SENTINEL2-A/B), provide an abundance of freely available data, that enables
researchers to thoroughly study the field of remote sensing using popular methods such machine learning and
deep learning, that have proven to be very effective, if provided with large volumes of data. These technological
advancements have created the opportunity to incorporate automated methods in beekeeping, in order to provide
such useful information and aid the beekeeping community in managing their bee hives.

Motivated by the above, in this work, our goal was to perform automated bloom detection for the bee keeping
plant lavender. In order to accomplish this task, we amassed 15k lavender parcels across Southern France from
January 2020 to December 2021. Given the unavailability of blooming annotations, we combined knowledge from
experts in the field with automated, index-based data to create as close as possible target labels for the blooming
period of lavender. We compared the performance of different deep learning methods, suitable to handle time
series data and released the blooming dataset to be freely available for researchers in the field.

2. DATA ACQUISITION AND ANNOTATION CREATION

2.1 Study region

The study region selected encompasses a large area in southeastern France (Figure 1), covering 27,491.6 km2 and
spanning across three administrative areas: Provence-Alpes-Côte d’Azur, Auvergne-Rhône-Alpes, and Occitanie.
These specific areas were chosen as they contain a majority of France’s lavender fields. The selection of this
broader region was based on the availability of crop type and parcel border maps for France’s metropolitan area,
which are provided by the French government through the Land Parcel Identification System (LPIS). LPIS crop
maps rely on the annual declarations from farmers who report the extent of their parcels and the type of crop
grown. According to the French Government’s on-the-spot checks, the accuracy of the marked parcels is 98%,
with a relative error of 0,3%.

2.2 Sentinel-2 data

In order to acquire the Sentinel-2 multitemporal and multispectral in top-of-canopy reflectance images, a python
script was prepared that uses Google Earth Engine to access and download the required data from COPERNI-

Figure 1. Selected area of study in southeast France.
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CUS/S2 SR, an open access dataset from the Scihub7 platform. For each parcel, the spatial borders provided
by the LPIS system were utilized to download the lavender field’s area and only parcels where lavender was cul-
tivated during January 1st 2020 to December the 31th 2021 were selected. During this time period, the 10-day
median images were acquired and images having more than 20% were discarded. Additional cloud masking was
performed, utilizing the QA60 band of Sentinel-2 and more specifically the bits 10 and 11, that represent opaque
and cirrus clouds. The exported images have 10m spatial resolution, with bands of different spatial resolutions
upsampled by Google Earth Engine internal functions.

The dataset created in this work includes the provided 12 B bands provided from COPERNICUS/S2 SR:
Aerosol (B1), Blue Green and Red (B2, B3 and B4), 4 Vegetation Red Edge bands (B5, B6, B7 and B8A), a
near infrared band (B8), Water vapor (B9) and two shortwave infrared bands (B11 and B12). However bands
B1 and B9 were not taken into consideration during the evaluation of different deep learning methods.

In order to enable the application of convolutional and non-convolutional methods, two dataset formats
were considered, an image-based format and a vectorized format. For the image-based format, each parcel is
comprised of a Tp × C ×Hp ×Wp image, where Tp is the total number of 10-day median observations with less
than 20% percent cloud coverage, C is the number of Sentinel-2 bands and Hp,Wp represent the height and
width respectively of a square patch containing the parcel’s pixels. Pixels outside of a parcel’s area are zero
padded. In the vectorized format, each parcel is comprised of a Tp × C ×Np, where Np is the total number of
pixels in the parcel. As parcels observed from Sentinel-2 are relatively small, they can be treated as pixel vectors
without considering their spatial extent. Following,8 json files are provided containing a parcel’s perimeter, pixel
count, cover ratio perimeter to surface ratio.

2.3 Blooming annotation acquisition

Owing to the size of the selected study region, potential differences in lavender blooming periods from parcel to
parcel may arise. Consequently, data from the EU Copernicus DIAS reference service WEkEO9 were utilized
for an initial estimation of the blooming period. Start-of-season and end-of-season data maps were employed to
split the lavender parcels to Ncls = 8 clusters using the K-Means algorithm, creating initial groups of parcels
exhibiting similar seasonal patterns. Parcels belonging to the same cluster were randomly selected and given to
experts from the Aristotle University of Thessaloniki (AUTH), for accurate annotation of the start and end of
their blooming period. In total, 24 randomly selected parcels were given to the experts.

For the purpose of obtaining the blooming period of each lavender crop, the annotation provided by the
experts was combined with a study of the Enhanced Vegetation Index (EVI) of each parcel. EVI measures the
greenness of vegetation while adjusting for atmospheric and soil noise and reducing saturation,10 thus its was
deemed as an appropriate index to study lavender condition during its blooming period. EVI is defined as:

EVI = G
NIR−RED

NIR+ C1RED − C2BLUE + L
(1)

Where NIR, RED and BLUE denote the reflectance values of bands B8, B3 and B1, G is a gain factor C1 and
C2 are aerosol adjustment coefficients and L is the soil adjustment coefficient. Usually, L = 1, C1 = 6, C2 = 7.5,
and G = 2.5. To take into account the scaling factor of Sentinel-2, the band reflectance values were divided by
10,000. For each individual lavender parcel, the mean EVI was calculated for every available observation in a
span of 2 years, 01 January 2020 to 31 December 2021. The reasoning of examining EVIs across two years was
that due to the periodic nature of plant phenology, a study of the temporal profile of EVI values would provide
a rough estimate of lavender blooming periods.

One of the issues presented in utilizing EVI values as time series, is the existence of outliers that skew the
time series wave form. To reduce the outlier values, previous works utilizing multitemporal satellite data have
used harmonic regression to fit the time series,11,12 a technique that proved to be very effective. Following these
findings, the lavender parcels EVI time series were fitted to a harmonic function and the estimated harmonic
coefficients were used to recreate a fitted EVI time series for the 2-year span. The harmonic function equation
for a singular time step t was formulated as:
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Figure 2. Example of 2 EVI time series for one year (orange) and their corresponding fitted harmonic (blue).

EV It = b0 + b1t+ b2 cos(
2π

365
t) + b3 sin(

2π

365
t) (2)

Where b0, b1, b2 and b3 are the harmonic coefficients to be estimated and 2π
365 is the angular frequency ω,

with T = 365 days. The effectiveness of fitting raw EVI time series to a harmonic function in order to reduce
spikes due to outliers is shown in Figure 2.

After the estimation of the mean EVI harmonised time series for each cluster, the phase shift from the
annotated cluster was computed. The purpose of this process was to calculate the phase shift from the annotated
cluster and shift the blooming period accordingly. This approach was adopted to alleviate the challenge of
annotating each region individually. The phase, denoted by ϕ and measured in radians, was defined as follows:

ϕrad = arctan

(
b3
b2

)
(3)

To estimate the shift in days, the radian phase ϕrad was converted in degrees and the following equation was
applied:

∆ϕdays,i = T
ϕg
degrees − ϕi

degrees

360
, i = 1, ..., Ncls (4)

With ϕg
degrees being the radian phase of the annotated cluster. Finally, the blooming period for a cluster i

was calculated as:
Bloomi = Bloomg −∆ϕdays,i, Bloomi ∈ [bloomstart, bloomend] (5)

All individual parcels in the same cluster i, were assigned the same blooming period Bloomi, . Model training
and testing were performed from April 2021 through September 2021.

3. IMPLEMENTED MODELS AND RESULTS

To assess the effectiveness of deep neural network (DNN) methods on the newly created dataset, firstly a model
combining convolutional13 and recurrent14 layers was evaluated. The particular model, denoted as CNN-LSTM,
takes a sequence X ∈ RT,C,H,W as input and generates a label yt for each timestep T , where yt is a binary
value that represents whether the timestep corresponds to a bloomed or non-bloomed time period. Additionally,
another method has been evaluated where instead of handling the X as a time series of satellite images, a fixed
number of S pixels was randomly sampled from the parcel. In this way, parcels are treated as pixel vectors
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Figure 3. Architectures of a) CNN-LSTM and b) PSE-LSTM models

Xvec ∈ RT,C,S . A Pixel-Set encoder8 (PSE), is utilised to process Xvec before feeding its output to an LSTM
layer.

The CNN in the CNN-LSTM model consisted of three 2D CNN layers, with a kernel size of 3 for the first two
layers and a kernel size of 4 for the last layer. Max pooling operations and ReLU non-linearities were used between
each convolutional layer. The PSE module was designed based on the architecture proposed in,8 comprised two
bidirectional LSTM layers, with a hidden size of 128. A graphical illustration of the model architecture can be
seen in Figure 3.

For training and testing, approximately 70% and 30% of the dataset were respectively used. The models
were trained using the cross-entropy loss for 40 epochs, with a batch size of 32 and the Adam optimizer with
a learning rate of 1e − 3. To augment the training dataset, random Gaussian noise with a standard deviation
of 1e − 2 was added to the pixels. In the case of the CNN-LSTM evaluation, each parcel image was resized
to 32 × 32 before being passed to the CNN-LSTM. The performance of both the CNN-LSTM and PSE-LSTM
models is presented in Table 1.

In summary, the results show that both the CNN-LSTM and PSE-LSTM methods are effective for predicting
blooming periods in lavender parcels, with their accuracy scores being close. These findings demonstrate the
potential of using DNNmethods for precision agriculture applications, particularly in the detection and prediction
of crop cycles phenology.

Model Accuracy (%)
CNN-LSTM 95.64
PSE-LSTM 91.15

Table 1. Lavender blooming detection results on the proposed dataset.

4. CONCLUSIONS

In this paper, a dataset enabling the training of deep learning methods on the task of bloom detection and
more specifically for lavender, a plant of significant importance to bee keeping, was introduced. Potential future
work could focus on further improving the annotations for the lavender blooming periods. One approach would
be to utilize experts who could visit the lavender parcels in person and annotate the exact blooming periods.
Additionally, there is potential to expand the annotations to cover all the production stages that lavenders may
have, not just their blooming periods. Another avenue for exploration would be to examine other bee keeping
plants, such as oilseed rape, that have more lengthy blooming periods, to further understand the relationship

Proc. of SPIE Vol. 12786  127860B-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 27 Sep 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



between bee pollination and plant blooming. These areas of future work could provide deeper insights into the
dynamics between bees and plants, and ultimately lead to more informed and effective beekeeping practices.
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